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Beam Stability at Synchrotron Light Sources

Outline

• Application of filters to beam stability
• Ideal frequency-selective filter characteristics
• Characteristics of common analog filters
• Anti-alias filters
• Averaging as a filter
• FIR digital filters
• IIR digital filters
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APPLICATIONS OF FILTERS TO BEAM STABILITY
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Applications of filters to beam stability

• Anti-alias filters prior to A/D conversion
– Stringent requirements not to contaminate signals as they are digitized.

• Anti-alias filters prior to sample-rate conversion (down-sampling)
– Similar stringent requirements to anti-alias filters for A/D conversion.

• Implementation of digital regulator functions.

• Implementation of signal processing algorithms (eg measurement of beam 
motion within specified frequency bands).
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Analog front-end of APS x-ray and Narrowband rf bpms
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Real-time RMS orbit motion calculations

• New real-time measurement of the APS orbit motion
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PROPERTIES OF COMMON ANALOG FILTERS
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Frequency Response of Practical Filters

• When a realizable impulse response is generated, the frequency response of 
the resulting filter is compromised from the ideal response
– The passband may not be flat
– There is a finite width to the transition from passband to stopband
– The stopband will not have infinite attenuation
– The phase response will not be zero for all frequencies.
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Magnitude Response of Common Analog Filter Types

• The following are all 4th-order analog lowpass filters with cutoff at 1Hz
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Basic Properties of Common Analog Filter Types

Passband Stopband Key benefits

Butterworth Flattest -20N
dB/decade

Maximally flat in
passband

Chebyshev
Type I Equiripple -20N

dB/decade
Faster initial roll-off
than Butterworth

Chebyshev
Type II Flat Equiripple Faster roll-off than

Butterworth

Elliptic Equiripple Equiripple Narrowest transition
band

Bessel Monotonic -20N
dB/decade

Linear-phase in
passband
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Specifying Analog Filters with |Ha(jw)|2

• Consider the following Laplace transfer function
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• The magnitude response is computed by setting s = jw and computing the 
magnitude of the resulting expression

• However, the magnitude response can also be computed from the following 
product

• The magnitude-squared of any Laplace transfer function can be computed from 
this product which always results in a rational polynomial of powers of w2.
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Transfer Functions of Lowpass Analog Filters

• Commonly, the transfer functions of analog lowpass filters are of the form

2
2

)(1
1

)(
sP

sH
N

a +
=

• Where PN(s) is a polynomial of order N in s the form of which depends on the 
chosen filter type.

• Examples for P(s) are:
– Butterworth filters have PN(s) = sN

– Chebyshev and Elliptical filters use Chebyshev polynomials of order N.
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Butterworth Filters (cont)

• The poles of the Butterworth magnitude-squared response all lie on a circle of 
unit radius in Laplace-space.
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• The magnitude-squared response of an Nth order Butterworth filter is given by
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Butterworth Filters

• Butterworth filters are maximally-flat.
• There is no ripple in either the passband or stopband.
• The magnitude-response of an Nth-order filter rolls off at 20N dB/decade.
• The stopband phase delay of an Nth-order filter is -90N degrees.
• A Butterworth filter can be completely described by its -3dB cutoff frequency Ωc, 

and its order N.
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Transfer Functions of Normalized Butterworth Lowpass 
Filters

Coefficients for each power of sFilter
Order S8 S7 S6 S5 S4 S3 S2 S1 S0

1 1 1
2 1 1.4142 1
3 1 2 2 1
4 1 2.6131 3.4142 2.6131 1
5 1 3.2361 5.2361 5.2361 3.2361 1
6 1 3.8637 7.4641 9.1416 7.4641 3.8637 1
7 1 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1
8 1 5.1258 13.1371 21.8462 25.6884 21.8462 13.1371 5.1258 1

• All these filters are normalized (ie their -3dB cutoff frequency is 1rad/s).
• For example, the 4th order Butterworth lowpass filter is described by the transfer 

function

16131.24142.36131.2
1

)( 234 ++++
=
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Butterworth Lowpass Filter Design Example

• Determine the lowest order of a Butterworth filter that has a -3dB cutoff at 
1kHz, and minimum attenuation of 40dB at 5kHz.
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• We’ll use the following expression for a Butterworth filter to compute the 

order.
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Substituting known values,

The normalized 3rd-order Butterworth filter is given by
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ANTI-ALIAS FILTER DESIGN
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Anti-Alias Filter Considerations

• Maintain accuracy commensurate with ADC resolution
– Reduce alias contamination below quantization noise of ADC
– Keep filter pass-band attenuation within ADC resolution

• Parameters to adjust
– Sample Frequency
– Filter Type
– Filter cutoff frequency
– Filter Order

• Other factors 
– Filter phase shift may be important consideration in stability of feedback 

applications
– Filter pass band undulations  may be undesirable in high resolution 

measurement applications
• No pass band undulations - Butterworth, Bessel, Chebychev I
• Pass undulations - Chebychev II, Eliptical

– Filter roll-off affects amplitude of frequencies near cutoff
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Anti-Alias Filter Considerations

• Relation between sampling frequency and desired attenuation
• For a Butterworth Filter

• Difference in dB between passband frequency fp and any frequency fa

• We select the lowest aliased frequency to fall at fp so therefore:  

• The above equation relates desired attenuation to Butterworth Filter order and 
the ratio of the sampling frequency to the pass band frequency

• The following table evaluates the above expression for          ratios 3-10 
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Anti-Alias Filter Considerations

fs/2 fsfb fa

fs-fb

Salias

Qnoise

Signal

fa is aliased to fb

Aliased frequency is greater Qnoise
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Anti-Alias Filter Considerations

Signal
Filter

fs/2 fsfb fa

fs-fb

Salias

Qnoise

fc
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Anti-Alias Filter Considerations

Signal
Filter

Filtered Signal

Aliased frequency now at or below Qnoise

fs/2 fsfb fa

fs-fb

Salias

Qnoise

fc
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Measured Filter Performance

-116 dB
Adjacent Channel Crosstalk 

(At 105 Hz)

-115 dBNoise and Pickup 

90 dB
Spurious Free Dynamic 
Range

(45 Hz Full-Scale Input)

98 dBAttenuation (at 800 Hz)

165 HzBandwidth (3 dB)
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Filter Frequency Response (Average = 32)
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Cross Talk on Channel #1 

-106.2* dB

350Hz

-115 dB**

175Hz

-107 dB**

60Hz

-109 dB**

** db Relative 
to 1 Volt rms

* dB Relative to 
Ch #2 Drive
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Digitizer performance trade-offs

• Getting even 16-bit performance is not as simple as just using a 16-bit digitizer!
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Ref: “Practical Limits of Analog-to-Digital Conversion” (Jerry Horn)
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FINITE IMPULSE RESPONSE (FIR) DIGITAL FILTERS
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FIR Filter Design by Impulse Response Truncation (IRT)

• In the IRT method of designing an FIR filter, we take the impulse response of 
the idealized impulse response, truncate it to (say) 2M+1 samples, and shift it by 
M samples to make the impulse response causal.

n
0

n
0

Non-causal doubly-infinite ideal impulse response

Truncated & shifted causal impulse response
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FIR Filter Design Example Using IRT

Design a bandpass filter with band edges at 0.3π and 0.56π and an impulse 
response of length 31.

Solution

f

|H(f)|

0.3π π0

1

0.56π 1.44π 1.7π 2π

• The frequency response must be specified from 0 to 2π, in order to do the 
inverse Fourier transform.

• The magnitude of H(F) will be unity from 0.3π to 0.56π and from 1.44π to 1.7π
and zero elsewhere, as shown below
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FIR Filter Design Example by IRT (cont)

• First, we’ll compute the ideal impulse response
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FIR Filter Design Example by IRT (cont)

• Truncate the sequence to 31 points by defining that the sequence be zero 
outside the range -15 ≤ n ≤ 15.

• The sequence is then made causal by shifting the truncated impulse response to 
the right by 15 points.

• The final impulse response and the corresponding frequency response are 
shown below

31-point Impulse Response Frequency Response of 31-point Filter
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Frequency Response vs Length of Truncated Impulse 
Response

• More points gives a better approximation to the desired (ideal) frequency response
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…but there is no change in the amplitude of the passband or 
stopband ripple.
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Phase Distortion and Linear Phase Response

• Nonlinear-phase filters (eg a simple IIR lowpass filter) introduce distortion because 
difference frequency components depart from the filter at different times.

Simple IIR Filter (a=0.75)
(Non-linear Phase)

8-Point FIR Averager
(Linear Phase)

Input

Output

Input

Output

• Whether it is better to have phase distortion or a time-delay will depend on the 
application (eg in feedback/control, the time-delay can significantly reduce 
bandwidth).
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Gibbs Effect and the Impulse Response Truncation Method

• The truncation process is in effect multiplication of the ideal impulse response by 
a rectangular window (c.f. windowing in the DFT).

Hideal(f)

W(f)

H(f)

∗

][][][ nwnhnh ideal ⋅=

• In the frequency domain, this means the actual frequency response is the 
convolution of the ideal response and the frequency response of the window 
function

][][][ ωωω WidealHH ∗=
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FIR Filter Design by Windowing

• The same window functions discussed in relation to the DFT can be used in 
place of the rectangular window (truncation).

• Windows used for FIR filter design include Hann, Hamming, and Blackman.
• Properties of filters designed with these windows are shown below

Window Main-lobe
width (∆ML)

Transition
width (∆ω)

δ Passband
Ripple (dB)

Stopband
Ripple (dB)

Rectangular 4π/(2M+1) 0.92π/M 0.09 0.75 -21
Hanning 8π/(2M+1) 3.11π/M 0.0063 0.055 -44
Hamming 8π/(2M+1) 3.32π/M 0.0022 0.019 -53
Blackman 12π/(2M+1) 5.56π/M 0.0002 0.0017 -74

0.5

ωc

∆ML

1+δ
1-δ

δ
−δ ωp ωs

∆ω
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Effect of Windowing on Bandpass Filter Example

• Magnitude responses of bandpass filters with length 101 for different window 
functions (band edges at 0.15Fs and 0.28Fs)

Hanning Window

Hamming Window

Blackman Window

Rectangular Window
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Design Example Using the Window Method

Design a lowpass filter with passband from DC to 0.15Fs, at least 50dB attenuation 
above 0.2Fs, and passband ripple of less than 0.1dB.

• Any of the windows (except rectangular) will meet the passband ripple spec, but 
only the Hamming or Blackman will meet the stopband spec. Let’s pick the 
Hamming window.

• The transition band is 0.05Fs wide (ie ∆ω = 0.1π), so

π
π
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2.33≥Mgiving

• We’ll pick a filter length of 69, giving M = 34.
• Next compute the ideal filter coefficients and the window coefficients, where
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Design Example Using the Window Method (cont)
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Optimal Design Methods for FIR Filters

• Design methods discussed so far generate filters that are sub-optimal because
– the resulting passband and stopband ripple amplitudes are the same. 
– the passband and stopband ripple amplitudes are not constant, but decay 

as we move away from the discontinuities.
• The length of the filter to meet a given spec can be reduced if

– we allow different passband and stopband ripple amplitudes.
– we make the ripple magnitude constant in the passband and stopband.

• The most commonly used algorithm is the Parks-McClellan algorithm.
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Parks-McClellan Algorithm

• The objective is to minimize the maximum error across the filter bands.
• The algorithm makes use of the Remez Exchange optimization.
• The algorithm is implemented in Matlab with the functions remezord and remez.

Design Approach
• Separate normalized frequency-space into regions that define the desired 

response. There should be a ‘don’t care’ region between each ‘do care’ region.
• Specify a weighting factor for each region.
• Use Matlab to estimate the filter order, and then to compute the impulse 

response.
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Optimal Least-Squares Filter Design

• Consider a situation where a signal x[n] is to be filtered in such a way that the 
output sequence is as close as possible to a desired signal d[n]

∑ −⋅−=
k

knxkfndne ][][][][

• The least-squares solution involves taking the derivative of the mean-squared 
error with respect to each coefficient and setting the result to zero.

• The result is a set of Normal Equations that can be solved to find the optimum 
FIR filter coefficients from the input auto-correlation and input-demand cross-
correlation functions.
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AVERAGING AS A FILTER
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Simple Lowpass FIR Digital Filter

• The simplest FIR filter is a 2-point moving average, with transfer function
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Its frequency response is given by

Magnitude Response Phase Response

The difference equation 
is ( )]1[][5.0][ −+⋅= nxnxny
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4-Point FIR Averager

• A 4-point moving average, has the transfer function
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Its frequency response is given 
by

Phase ResponseMagnitude Response

The difference equation is

( )]3[]2[]1[][25.0][ −+−+−+⋅= nxnxnxnxny
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Averager Block Diagram (DSP Viewpoint)

1-sample
delay

Σ

1-sample
delay

1-sample
delayx[n]

x[n-3]x[n-2]x[n-1]

y[n]

( )]3[]2[]1[][25.0][ −+−+−+⋅= nxnxnxnxny

• This can be described with the following difference equation

• Or with the following z-transform transfer function
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Averagers with Different Number of Points
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• A boxcar averager is simple to implement, but does not provide the optimum 
level of filtering
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Using averaging to get more effective resolution

• Single-sample (turn-by-turn) resolution of APS bpms is nominally 12-bits.
• Residual noise in the analog front-end provides an opportunity to get more 

resolution by averaging data samples
– Assuming Gaussian noise, we improve the resolution by a factor 2 (one 

additional bit) by averaging four samples.
– The APS bpm processing system uses a 1024-sample boxcar averager to 

improve the resolution by a factor 32, giving effectively 17-bit resolution.
– In principle we can increase the resolution ad infinitum, provided we are 

willing to wait long enough to collect the requisite number of samples.

When does this breakdown?
• Averaging will always work when dealing with Gaussian noise, but at some 

point, other non-Gaussian processes start to dominate, limiting the performance
– Front-end amplifier non-linearity.
– Digitizer quantization errors (integral and differential non-linearity).
– Word-length effects in the digital processing circuits.
– Drift.

• Usually digitizers with 12-bit performance do not have 17-bit systematics.
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INFINITE IMPULSE REPSONSE (IIR) DIGITAL FILTERS
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IIR Digital Filter Design Methods

• Generate digital filter from analog prototype
– generate lowpass normalized analog prototype filter.
– convert lowpass prototype to other form if necessary (eg highpass, 

bandpass).
– convert analog filter to digital domain

• impulse invariance.
• bilinear transform.

• Generate digital filter directly in digital domain
– least squares design in frequency domain.
– least squares fitting of desired discrete-time impulse response.
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Simple Lowpass IIR Digital Filter

• A first-order lowpass IIR digital filter has the transfer function
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• This is the discrete-time equivalent of an electronic R-C circuit
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IIR Digital Filter Design by Impulse Invariance Method

• The idea is to design a digital filter whose impulse response is identical to the 
sampled version of the impulse response of the analog filter prototype.

• Given the Laplace transfer function of an analog prototype filter Ha(s), then the 
impulse response is given by

)}({)( 1 sHLth aa
−=

• The impulse response of the digital filter is ha(t) sampled at periodic intervals T

)(][ nThng a= ...3,2,1,0=n

• And the z-transform of the digital filter is given by
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)}({1)( saHLtah −= )(][ nThng a=



6/14/2003

USPAS 2003, John Carwardine Glen Decker and Bob Hettel

53

Beam Stability at Synchrotron Light Sources

Impulse-Invariance Mapping

For s = σ+jΩ, we get

• Mapping of the s-plane poles and zeros to the z-plane is achieved by the 
transformation

sTez =
TjTTjsT eeeez ΩΩ+ === σσ )(

• The entire strip on the s-plane between -π/2 and +π/2 is mapped into the unit 
circle of the z-plane.

• Because of the periodicity of the mapping, the strip on the s-plane between π/2 
and 3π/2 (and all other similar strips) are also mapped into the unit circle of the 
z-plane. 

T

π3

T

π

T

π
−

T

π3−

σ

jΩ

s-plane z-plane

Re z

Im z



6/14/2003

USPAS 2003, John Carwardine Glen Decker and Bob Hettel

54

Beam Stability at Synchrotron Light Sources

Using the Impulse-Invariance Mapping

• Consider a simple 1-pole (stable) analog filter described by the Laplace transform

α+
=

s
A

sH )(

• The continuous-time impulse response is given by

tAeth ⋅−= α)(

• The discrete-time impulse response is obtained by sampling the h(t) at time 
intervals T ( )nTTn eAAenThng ⋅−⋅⋅− === αα)(][
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=
ze

A
zG Tα

• The closed-form expression for the z-transform of g[n] is therefore
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Impulse Invariance Mapping of 1st and 2nd Order Poles

• There are two forms of the second-order transfer functions, and without proof, 
are mapped as follows
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• So, to generate the z-transform from the Laplace transform,
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Impulse-Invariance Numerical Example

• Consider the following 2-pole filter that is to be converted to the discrete-domain 
at a sample rate of 20Hz.

• We will use the first form of the 2nd-order mapping,
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Impulse-Invariance Numerical Example (cont)

• Comparisons of the original continuous-time and the discrete-time filters are 
shown below.
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Aliasing with the Impulse-Invariance Transformation

• Since the mapping is not unique, there is aliasing of the original analog 
frequency response above half the sampling frequency.

• The figures show the magnitude response of the same 2-pole Butterworth filter 
over a frequency range up to twice the sampling frequency

Magnitude Response (Log Frequency) Magnitude Response (Linear Frequency)

Discrete

Continuous

Discrete

Continuous
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IIR Filter Design using the Bilinear Transformation

• Unlike the impulse-invariance transformation, the bilinear transformation maps 
the entire left-half of the s-plane into the unit circle.

• Because there is a one-to-one correspondence between points on the s-plane 
and points on the z-plane, there is no aliasing of the filter response.
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• The bilinear transformation is given by

where C is a constant to be 
found
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BLT Warping of Analog Frequencies to Digital Frequencies

• The mapping from analog frequency Ω to discrete-time frequency ω is

π−π

−π

π

Ω

ω

2
tan

ω
⋅=Ω C

• The mapping is shown graphically below
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=
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ω
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• The mapping constant allows us to adjust the scaling so we can get exact 
correspondence at one additional frequency. A low frequency approximation 
is
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BLT Example

Design a digital IIR filter that implements the analog lowpass filter described by the 
following normalized Laplace transfer function and a sampling rate of 20Hz. Use the 
low frequency approximation of the bilinear transformation.
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• We will use the following mapping to get good low frequency approximation
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• Plugging this into the Laplace transfer function gives
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Comparison with Impulse Invariance Method

• The magnitude responses for the original continuous-time filter and the discrete-time filters 
from both impulse invariance and bilinear transformation are show below

• For low frequencies, the impulse invariance method gives an exact match with 
the continuous-time filter.

• The bilinear transformation generates a zero (null) response at the Nyquist 
frequency, whereas the impulse invariance aliases the original response.

• Both discrete-time filters have alias responses about multiples of the sampling 
rate.

Bilinear transform

Impulse-invariance
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BLT Bandpass Example with Pre-warping

Design a digital bandpass filter given the following Laplace transfer function that has 
a passband from 100rad/s to 200rad/s. The sample rate should be 100Hz. Use the 
bilinear transformation such that the upper band edge matches exactly.
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• First we have to determine the value of the mapping constant C in the 
transformation
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• The analog frequency we want to match is 200rad/s so, we can compute C as 
follows
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• The value of ω is determined from the sampling rate and desired matching 
frequency
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BLT Bandpass Example with Pre-warping (cont)

• We can now apply the following mapping to our analog transfer function

Plugging this mapping into the Laplace transfer function gives us the Z 
transform
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After a lot of manipulation, we get the discrete-time transfer function
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BLT Bandpass Example with Pre-warping (cont)

• The resulting frequency response is plotted in the figure, together with the 
corresponding analog filter response and the BLT discrete-time filter response 
without pre-warping.
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Digital PID Regulator

• The most common feedback regulator is the PID regulator, which has the Laplace 
transfer function

dKs
s
iK

pKspidH ⋅++=)(

Where Kp, Ki, Kd are the gain constants for the proportional, integral, and 
derivative terms, respectively.

• A digital PID can be generated from this  using either BLT or impulse invariance 
mapping.

• In the case of the impulse invariance method, we simply use the mapping
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• This results in the discrete-time PID transfer function
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Digital PID Regulator (cont)

• For the BLT, with a good low frequency approximation, we use the mapping
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• This results in the discrete-time PID transfer function
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Comparison of FIR and IIR Filters

Characteristic IIR Filters FIR Filters

Filter order for given
specification Lowest Highest

Number of
multiplications Least Most

Memory requirements Least Most

Stability Must be designed in Guaranteed

Linear phase Not possible Yes if impulse response
is symmetrical

Can simulate analog
filters Yes No

Supports adaptive
filtering

Yes, but non-linear
solution Yes, and linear solution

Sensitivity to coefficient
quantization

Can be high – depends on
realization Generally very low

Difficulty in analyzing
finite wordlength effects More difficult Easier


